linear regression - Trying to get confidence/prediction intervals with `predict.lm` in R, but I keep getting an error regarding my dichotomous variable -
i have dataset looks this:
time size type 1 22 151 0 2 31 92 0 3 26 175 0 4 35 31 0 5 27 104 0 6 5 277 0 7 17 210 0 8 24 120 0 9 9 290 0 10 21 238 0 11 33 164 1 12 20 272 1 13 16 295 1 14 43 68 1 15 36 85 1 16 26 224 1 17 25 166 1 18 18 305 1 19 35 124 1 20 19 246 1
my aim simple: run regression , confidence/prediction intervals.
i run regression so:
fit.lm1<-lm(time~size+type,data=project3)
i want 95% confidence intervals , 95% prediction intervals mean time
when size
equal 200. want cis/pis type
= 0 , type
= 1. code is:
new_val <- data.frame(size= c(200,200),type=c(1,0)) ci<-predict(fit.lm1,newdata=new_val,interval="confidence") pi<-predict(fit.lm1,newdata=new_val,interval="prediction")
i following errors:
error: variable 'type' fitted type "factor" type "numeric" supplied in addition: warning message: in model.frame.default(terms, newdata, na.action = na.action, xlev = object$xlevels) : variable 'type' not factor
i'm not quite sure how interpret this. r shows type
"factor" 2 levels, don't know what's wrong.
any great! thank you.
Comments
Post a Comment