r - Combine a specific row from many data frames into one data frame -
i have 20 data frames (dat.table1 dat.table20) this:
> dat.table1 mean sd lb ub 1 -3.251915678 0.09831336 -3.44979982 -3.0579865 2 0.529393596 0.09403571 0.34492156 0.7138352 3 0.437666296 0.09555116 0.25218768 0.6230282 4 0.386773612 0.09338021 0.20630132 0.5708987 5 0.259218892 0.10023005 0.06538325 0.4610775 6 -0.048387041 0.07875680 -0.20517662 0.1020621 7 0.086933460 0.08688864 -0.08462830 0.2565562 8 0.206235709 0.08200178 0.04710170 0.3658142 9 0.343474976 0.08204759 0.18539931 0.5062159 10 -0.354694572 0.08556581 -0.52609169 -0.1916891 11 -0.270542304 0.07349095 -0.41319234 -0.1291315 12 0.124547080 0.08323933 -0.04331230 0.2836064 13 0.005354652 0.10487004 -0.20677503 0.2061523 14 0.296131787 0.08235691 0.13605602 0.4593168 15 0.246056104 0.07536908 0.09803849 0.3959664 16 0.271052276 0.08347047 0.10437983 0.4354910 17 -0.005474416 0.09352408 -0.19415321 0.1736560 > dat.table2 mean sd lb ub 1 -3.32373198 0.10477638 -3.53563786 -3.1241599 2 0.58316739 0.09466424 0.39814125 0.7690037 3 0.47869295 0.09768017 0.28395734 0.6701996 4 0.44479756 0.09489120 0.26172536 0.6336547 5 0.30072454 0.09964341 0.10674064 0.4980277 6 -0.05397720 0.07987092 -0.20952979 0.1038290 7 0.06624190 0.08466350 -0.10406855 0.2297836 8 0.18411601 0.07997405 0.02953943 0.3433614 9 0.35256600 0.07871029 0.20079165 0.5111548 10 -0.39566218 0.08567173 -0.56842809 -0.2281193 11 -0.29250153 0.07652253 -0.44428227 -0.1435696 12 0.07428006 0.08742497 -0.09829608 0.2419713 13 -0.03926006 0.11335154 -0.26894891 0.1716172 14 0.30625276 0.08212213 0.14760732 0.4674057 15 0.26511644 0.07824379 0.11330060 0.4216398 16 0.25476552 0.08699879 0.08646282 0.4240095 17 -0.05081449 0.10151042 -0.25162773 0.1451824
my question how pick specific row (say row 1) data frames , combine them rows in new data frame?
thanks.
it better read datasets in list
rather creating/reading 20
datasets in global enviroment , these kind of operations. having created datasets
, do:
lst <- mget(ls(pattern='^dat.table\\d+')) res <- do.call(`rbind`,lapply(lst,function(x) x[1,])) row.names(res) <- null
for two
datasets, get
res # mean sd lb ub #1 -3.251916 0.09831336 -3.449800 -3.057987 #2 -3.323732 0.10477638 -3.535638 -3.124160
another option use slice
dplyr
library(dplyr) library(tidyr) d1 <- unnest(lst, grp) group_by(d1, grp) %>% slice(1) # grp mean sd lb ub #1 dat.table1 -3.251916 0.09831336 -3.449800 -3.057987 #2 dat.table2 -3.323732 0.10477638 -3.535638 -3.124160
or using data.table
library(data.table) rbindlist(map(cbind, grp=seq_along(lst), lst))[, head(.sd,1), by=grp] # grp mean sd lb ub #1: 1 -3.251916 0.09831336 -3.449800 -3.057987 #2: 2 -3.323732 0.10477638 -3.535638 -3.124160
update
regaring error message, suspect column names
in of lst
elements different. example if change
colnames(lst[[1]])[1] <- "mean1" do.call(`rbind`,lapply(lst,function(x) x[1,])) #error in match.names(clabs, names(xi)) : #names not match previous names
one option change column names same if columns ordered each dataset
nm1 <- sapply(lst, function(x) colnames(x))[,2] #because changed 1st element #column name lst1 <- lapply(lst, function(x) {colnames(x) <- nm1; x} ) res <- do.call(`rbind`,lapply(lst1,function(x) x[1,])) row.names(res) <- null
Comments
Post a Comment